import os, shutil
import tensorflow as tf
import numpy as np
import cv2
model = tf.keras.models.load_model('.\Model_Mobile01.h5') #restore
root_dir = r"D:\DATASET\Oxford\train_image"
save_dir = r"D:\ADC_POC\cat_vs_rabbit\test-images"
for (root, dir, file) in os.walk(root_dir) :
# print(f'root: {root}')
# print(dir)
# print(file)
for fileName in file :
print(root)
# basename, extension = os.path.splitext(fileName)
# print(f'basename:{basename}, extension:{extension}')
sourcePath = os.path.join(root, fileName)
print(f'sourcePath = {sourcePath}')
img = cv2.imread(sourcePath)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
savePath = os.path.join(save_dir, fileName)
print(f'savePath = {savePath}')
createFolder(save_dir)
imgResize = cv2.resize(img, (256, 256))
input_image = imgResize[tf.newaxis, ...]
print(input_image.shape)
pred_mask = model.predict(input_image)
pred_img = cv2.cvtColor(pred_mask[0], cv2.COLOR_BGR2GRAY)
print(pred_img)
img = np.where(pred_img>0, 0, 255).astype(np.uint8)
cv2.imwrite(savePath, img)
breakSegmentation Inference
2022. 8. 31. 09:37